Correct me if.I’m wrong but the Continuum Hypothesis was proven undecidable. So we can chose to add CH (false or true, whichever we like) to ZFC without changing anything meaningful about ZFC.
But then, if we chose it to be true, could we construct such a set ?
Correct me if.I’m wrong but the Continuum Hypothesis was proven undecidable. So we can chose to add CH (false or true, whichever we like) to ZFC without changing anything meaningful about ZFC.
But then, if we chose it to be true, could we construct such a set ?
If you could construct such a set, CH wouldn’t be independent of ZFC
Thanks for the insight !